LA-UR-01:3749
Approved for public release;

distribution is unlimited

Title:

Author(s):

Journal:

Journal data:

Status:

LOS ALAMOS

Elements of a theory of simulation V:
Phase Space Properties of Sequential

Dynamical Systems

Christopher L. Barrett, D-2
Henning S. Mortveit, D-2
Christian M. Reidys, D-2

Applied Mathematics & Computation
Elsevier Science, Inc.
Holland

NA

Ready to be submitted

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is
operated by the University of California for the U.S. Department of Energy under con-
tract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the
U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government pur-
poses. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. The Los Alamos
National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a

publication or guarantee its technical correctness.



ETS V: Phase Space Properties of
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Los Alamos, NM 87545, USA

Abstract

Sequential Dynamical Systems (SDS) [10] are a class of finite dynamical systems
specifically designed to provide a framework for analysis and categorization of com-
puter simulations. An SDS consists of (i) a finite undirected graph Y, where each
vertex has associated a binary state, (i7) a collection of vertex labeled Y-local func-
tions, and (7i7) a permutation of the vertices of Y. The induced SDS is the map
that results from applying the functions once to the states in the order given by
the permutation. One theme of particular importance in SDS research is the study
of its phase space, i.e. the finite unicyclic directed graph induced by the dynamical

system [10].

In this paper we first establish what amounts to a morphism between two SDS
having a specific relation, i.e. we assume that there is (i) a covering map between
their corresponding base graphs p : Y — Z, and (i%) their respective local functions
and update schedules fulfill certain compatibility relations. This morphism then
yields an embedding of the underlying phase spaces of the Z-SDS into the Y-SDS
and therefore allows one to deduce phase space properties of the SDS over Y based
on phase space properties of the SDS over Z. Second, we investigate the classes
of graphs that can arise as images of covering maps for some fixed graph Y, as
each of these graphs induces SDS that contain information about SDS over Y. In
particular we will study this situation for the binary n-cube @)%, where we show
that there exists a covering map p : Q5 — K, if and only if 2" =0 mod n + 1.

Key words: sequential dynamical systems, graph morphisms, covering maps,

phase space embeddings, reduction, factorization.




1 Introduction

Computer simulations and networks of asynchronously updated nodes or ver-
tices !, as for example gene-regulatory networks, catalytic networks or mobile
communication networks, are typically difficult to analyze and categorize. In
fact, there are not many conceptual frameworks available for a quantitative
analysis of these systems, and most techniques do not seem to work well
for asynchronous systems. Sequential dynamical systems (SDS) are a class
of finite dynamical systems that provides a conceptual framework for asyn-
chronous systems. In a straightforward way they encapsulate the three main
features of simulations and asynchronous systems as they consist of a de-
pendency graph Y, a collection of vertex labeled, Y-local functions? and a
permutation of the functions according to which the update is performed. In
the language of agent based simulations one may interpret a Y-local function
as an agent, the graph Y represents the dependency backbone giving the ac-
tual communication links among agents, and finally the permutation functions
as an update schedule of the system. SDS have been studied in [4,10] and

also in a slightly more generalized form in [6].

Let us discuss the three ingredients of an SDS in more detail: First, the un-
derlying dependency graph is a finite, undirected graph, and each vertex has
associated a binary state x; € Fy = {0,1}. One may consider a vertex as an
object, and an edge between vertices a and b indicates that the correspond-
ing objects may exchange information about their states. Second, we have a
collection or sequence of vertex labeled Boolean functions which perform the
update of the states of the vertices. These functions are typically symmetric,
i.e. they do not depend on the order of their arguments. Neither symmetry nor
the choice of binary states represent severe conceptual restrictions for SDS. In
particular, it is straightforward to generalize our results to SDS over arbitrary
finite state spaces. Finally, the third component is the ordering or permuta-
tion of the vertices in the graph Y. This permutation gives the order in which
the states are updated and has an oftentimes ignored impact on the structure
and properties of the resulting system. This is to say that the scheduling of

events is a crucial design feature. An SDS is thus a dynamical system of the

1 the vertices are assumed to have “local” information
2 A function is Y-local if it is defined over the states of a vertex i and the states of

the Y-neighbors of 4.



form ¢ : Fy — F5. A generalization has been considered in [6] where certain
vertices can be updated more than one time by the SDS.

Example: Consider the graph Y = Circ, as shown in figure 1. To each vertex ¢

1——2

4———3
Fig. 1. The circle graph on 4 vertices, Circy.
in Y we associate a state x; € {0,1} = F,. The parity function par; : F5 — I,
is defined by pars(z1,x2, 3) = 1 + 2 + 3. In the usual enumeration scheme

of elementary CA rules this is the rule labeled 150. We introduce the functions
Par;: F} — 3,1 <4 <4by

P&r3($1,$2,354) T2,T3,T4),

Par((x1,z9, 23,24 )
x1, parg(zy, T9, T3), T3, T4),
)
)-

(
(
(
(

Pary(z1, T2, 3, T4

Pa’er y L2, T3, Ty

(
(
Par; (%1, z2, parg(ze, T3, 24), Z4),
(

) =
T4) =
X1, To, T3, Ty) =
)

T1,T2,%3, parg(xl, Z3, CU4)

Thus the map Par; updates the state of vertex 7 based on the states of 7 and
its neighbors in Y and leaves all other states fixed. We apply these maps to
the state x = (1,1,0,0) in the order 7 = (1,2, 3,4). At each stage we use the
value of the previous function as the input to the next function, i.e.

(1,1,0,0) ¥ (0,1,0,0) ™% (0,1,0,0) ™ (0,1,1,0) ¥ (0,1,1,1) (1)

Thus we have Par, o Pars o PargoPary(1,1,0,0) = (0,1,1,1). The composi-
tion of maps Par, o Pars o Pary o Par; is a sequential dynamical system (SDS).
Specifically, it is the SDS over the graph Circ, induced by the parity function
pary : F5 — F, with ordering 7 = (1,2, 3,4). We denote this by [Parci,, 7).
Clearly, a different update order may give a different result. By iterating the
map ¢ = [Parci.,, 7] we obtain the orbit of (1,1,0,0), i.e

(1,1,0,0) ¢ (0,1,1,1)

e A

(0,0,0,1).

The phase space of the SDS ¢ is the union of all such cycles and possible

transients.



One central question in SDS analysis is how rescheduling influences the dy-
namical system. In particular, this amounts to a design question for computer
simulations since the actual implementation dictates a corresponding choice
of schedule. The question is to what extend would a different implementation

produce a “different” system?

Example: Let ¢; and ¢, be the two SDS induced by the parity function
over the graph Circs (figure 2) with the schedules m; = (1,2,3,4,5) and my =
(1,3,5,2,4), respectively.

Fig. 2. The circle graph on 5 vertices, Circs.

It is shown in [2] that SDS induced by the parity function are invertible as maps
independent of the underlying base graph. Accordingly, the phase spaces of ¢,
and ¢, consist of cycles (periodic points) and isolated points (fixed points). We
will show that the schedules 7m; and 75 induce SDS with significant differences
in both local and global dynamics. Straightforward calculations show that ¢,
has two fixed points, one 2-cycle, three 4-cycles and two 8-cycles. On the other
hand ¢, exhibits two fixed points, one 2-cycle, two 3-cycles, one 4 cycle, one
6-cycle and one 12-cycle. The entire phase spaces are presented in figures 3

and 4 respectively.

S

N Oy A

Fig. 3. The phase space of the SDS ¢ .

Remarkably, the structural difference in terms of periodic orbits is not the

only difference between these two SDS. In fact, ¢, in contrast to ¢; has a
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Fig. 4. The phase space of the SDS ¢o.

3

dense® pertodic orbit. The 12-cycle for ¢o which is dense in Fj is shown in

figure 5.

(1,0,0,0,0)~(1,1,0,1,1)~(1,0,0,0,1)—~(0,0,0,1,1)~(1,0,1,1,1)

i '
(1,1,1,0,1) (0,0,0,1,0)
| '

(0,1,0,0,0)=(1,1,1,0,0)=(0,1,1,1,0)=(0,0,1,0,0)<(0,1,1,1,1)

Fig. 5. The dense 12-cycle in the phase space of the SDS ¢5.

Obviously, the analysis of the dynamics of a simulation or network now be-
comes a question about the structure of the phase space of its underlying SDS.
One important research theme for SDS is deducing properties of the phase
space based on known quantities, typically Y-local information such as, e.g.
the graph Y, the local functions and the schedule. For various results on, e.g.
reversibility /invertibility and fixed points we refer to [2—4,10,11]. Typically,
the phase space of an SDS has more than one attractor or component, and
consequently a time series will only visit parts of phase space. Thus, in the
context of computer simulations, there will be valid states or regimes that
are never realized. Accordingly, one is interested in constructing a “reduced”
simulation system capable of producing a somewhat related dynamics in the
“essential” regimes and that ideally disposes of the “non-essential” regimes.
In this paper we address this question by establishing an embedding of SDS
phase spaces under certain conditions. Explicitly, we will show how to relate
an SDS ¢ over a graph Y and an SDS v over a smaller sized graph Z if there
exists a covering map p : Y — Z. This idea can be illustrated as follows:

3 A periodic orbit P = {p1,...,px} is dense in F} if the set {z € F} | dy(z,P) < 1}
equals 5, where dy denotes the usual Hamming metric.



Example: Let Y = Q3 and Z = K|, see figure 6. We will consider sequential

25 o 3

Fig. 6. The graph K is a covering image of the graph Q3.

dynamical systems over @3 and K, induced by the parity function. We first
observe that there exists a covering map p : @3 — K, given by p~'({1}) =

{0, 7}, p_l({Q}) = {1,6}, p_l({s}) = {2,5}, and p_l({4}) = {3,4}. Now, p
naturally induces an embedding 7 : F; — F§ by (7(z))r = ), that is,

T(x17x27x3ax4) == ($1,$2,$3,$4,$4,$3,.'L'2,./E1) -
Let m = (1,2,3,4) € Sy, and let 7, = (0,7,1,6,2,5,3,4). We now have a

commutative diagram
[Pa'rK4 ,(1727374)]

F,
! [Par,3,mp] l/T
F3 = F; .
Let further z = (1,0,0,0). We have [Parg,, (1,2, 3,4)](1,0,0,0) = (1,1,0,0),
and further iterations give the orbit

Nl

(]‘707070)—>(1’ 170: 0)—>(07 17 1: 0)

T —

(0,0,0,1)~—(0,0,1,1) .

Note that

[Pa‘rK4 7(1325334)]

(1,0,0,0) (1,1,0,0)

l [Pa‘rQSﬂTP] l
(1,0,0,0,0,0,0,1)——2—~(1,1,0,0,0,0,1,1) .

By applying the map 7 to the cycle of (0,0,0,0) under [Parg,, (1,2, 3,4)] it is
easily verified that we obtain the orbit of (1,0,0,0,0,0,0,1) under [Pang, Tp):



(1,0,0,0,0,0,0,1)—=(1,1,0,0,0,0,1,1)—(0,1,1,0,0,1, 1, 0)

/

(0,0,0,1,1,0,0,0)<—(0,0,1,1,1,1,0,0) .
A more detailed calculation shows that the entire phase space of the SDS
[Parg,, (1,2,3,4)] can be embedded* in the phase space of [Pargs, 7.

The above example is a particular instance of theorem 4. In general, two SDS
are “dynamically” related by an embedding of their phase spaces if (i) the
local functions are identical, (74) there exists a covering map between their
underlying base graphs, and (4i7) their schedules fulfill a specific compatibility
relation. Under these conditions the smaller system could potentially exhibit
“key” properties of the larger system. Clearly, there can be several covering
maps p; : Y — Z; for a fixed graph Y and varying graphs Z;. These maps
can be viewed as some kind of “factorization” of the SDS over Y into factors

which are SDS over the respective graphs Z;.

The paper is organized as follows: in section 2 we provide basic definitions and
terminology for SDS. In section 3 we give the formulation of the main theorem

and finally in section 4 we investigate how to factorize SDS over n-cubes.

2 Basic terminology and definitions

Let Y be a labeled graph with vertex-set v[Y] =N, = {1,2,3,...,n}, which
we write as Y < K,,. The edge-set of Y is denoted by e[Y]. A morphism
between graphs Y and Y’ is a pair ¢ = (¢, ¢2) with ¢ : v[Y] — v[Y'] and
¢ : e[Y] — e[Y’] such that

Ve ={i,j} €elY]: ¢ale) ={o1(7),d:1(j)}.

Thus, adjacent vertices in Y are mapped to i) adjacent vertices in Y’ or
i7) to the same vertex in Y’. A morphism of directed graphs also preserves
the direction of edges. A graph morphism ¢ : Y — Y’ is locally bijective

4 The former SDS has one fixed point and three orbits of length 5 while the latter
SDS has one fixed point and 51 orbits of length 5.



(surjective) if
Vi € v[Y]: @|p, () : By (i) = By (6(7))

is bijective (surjective). In the following we will use the term covering map
instead of locally bijective graph morphism. Note that a covering map (lo-
cally bijective graph morphism) does not have to be bijective, see for example

figure 6.

Let S1y (i) be the set of Y-vertices that are adjacent to vertex i, let §; =
|S1,y (¢)| and let d = max;en, 0;. The increasing sequence of elements of S y (4)

preceded by i is denoted by
BI,Y(i) = (i’jla-"aj&)' (2)

A function f : E¥ — F, where E and F are vector spaces, is quasi-symmetric if
for all z € E* and all permutations o € 1 x Sy_; we have f(o-z) = f(z) where
o-x is the permutation action on k-tuples given by 02 = (z5-1(1), ..., Zo-1(n))-
We write QSymm(E™, F) for the set of all quasi-symmetric functions from E"
to F.

To each vertex 7 of Y we associate a state z; € Fy, and we write z =
(1, Z2,...,x,) for the system state. For each £ = 1,...,d + 1 we have a

function f;, € QSymm(F%,F,), and for each vertex i we introduce a map
prOjY[i] ZFS _>]ng+17 (xlﬂ"'axn) = (xialev"'axjgi)' (3)

The map projects from the full n-tuple x down to the states vertex 7 needs
for updating its state. For each 7 € N,, there is a Y-local map Fjy : F; — F3
given by

Yi = f5i+1 o projy[i],

Fiy(xz) = (z1,...,2i-1,¥i(%), Tit1, - - ., Tn), (4)

as in the example on page 3. The function F; y updates the state of vertex ¢ and
leaves all other states fixed. We refer to the sequence (Fjy); as Fy. Note that
for each graph Y < K,, a sequence (f;)i1<k<n induces a sequence Fy, i.e. we
have amap {Y < K, } — {Fy}. We define the map [Fy, |: S, — Map(Fj,F3)
by

[FY,W] = HFn(i),Ya (5)
i=1



where product denotes ordinary function composition.

Definition 1 (Sequential Dynamical System) Let Y < K,,, let (fi)x for
1 <k <dY)+1 be a sequence of quasi-symmetric functions as above, and
let m € S, The sequential dynamical system (SDS) over Y induced by (fi)k

with respect to the ordering 7 is [Fy, 7).

Definition 2 The digraph T'[Fy,n| associated to the SDS [Fy,n| is the di-
rected graph having vertez-set By and directed edges {(x, [Fy,n|(z)) | z € Fy }.

For some examples of phase spaces refer to figure 3 and figure 4.

3 Factorization of SDS

The idea behind the factorization of a given SDS is to relate it to SDS defined
over simpler graphs. Accordingly, the term “relation” has to be made precise

which amounts to defining what a morphism between SDS is:

Definition 3 Let [Fz, 0| and [Fy, 7] be two SDS. An SDS-morphism between
[Fy,0]| and [Fy, 7] is a pair (¢, ®) where ¢ : Y — Z is a graph morphism and
where ® : I'[Fz, 0] — U'|Fy,n| is digraph morphism.

Given a graph morphism ¢ : Y — Z we want to relate the dynamics of SDS
over the two graphs Y and Z. The local functions will be the same for the two
graphs unless otherwise stated. To begin, we relate update schedules for Y
and Z via ¢. Assume | v[Y]| = n and | v[Z]| = m and let ¢7'(3) = {41,..., 4}
where 7, < ...4, for 1 <7 < m. Define the map n, : S;, = S, by

Ne(T = (M1, T2y ooy M) = (M1t oy Tagy sy Tl - -+ M1y, )- (6)
For instance, in the example with ¢ : Q3 — K, we have 14(4,3,2,1) =
(3,4,2,5,1,6,0,7).
Similarly, we define the map 7 : F)* — F by

(T(@)k = To(r)- (7)

The dynamics of SDS over Y and Z can now be related in the following
way [12]:



Theorem 4 Let Y and Z be loop-free connected graphs, let ¢ : Y — Z be
a covering map, and let (f;); be a fized sequence of Boolean quasi-symmetric

functions. Then the map 7 induces a natural embedding

T: F[Fz,ﬂ'] — F[Fy,?’]¢(’ﬂ')] (8)

Example: Let 0 = (0,7,1,6,2,5,3,4). To illustrate Theorem 4 we show how
to relate the phase space of the two SDS [Ming,,id] and [Minggs, o]. We
already discussed the covering ¢ : Q3 — K, and observe that ne(ids) = o.
In [1] we have shown that [Ming,,id4] has exactly two 5-cycles and no fixed
points. The two 5-cycles are shown in the top row of figure 7. For convenience

we use the map
. Z .
gi:IFZZ_>N’ gi(xla"'axi)zzxj'zj_l
§=0

to encode states (binary tuples), and we have, e.g. (1,1,0,1) — 1+2+8 = 11.
It is straightforward to see that the phase space of [Ming,,ids] is indeed
embedded in the phase space of [Ming;, o].

We remark that [Mingg, 74(id4)] has two fixed points in addition to the two
5-cycles shown in the last row in figure 7. These fixed points are related by
the graph automorphism = (07)(16)(25)(34), and consequently, so are their
transients. Stated differently, the two components in I'lMings, n,(ids)] con-
taining the fixed points are isomorphic. We present their structure in detail in
figure 8.

It will usually be more feasible to analyze the SDS over the smaller graph,
and a particularly interesting case is the following:

Proposition 5 Let m € S,,11 and assume 2" = 0 mod n + 1. Then the SDS
[Parqy, ny(7)] has a periodic orbit of length n + 2.

PROOF. We will apply Theorem 4 in order to show that the phase space of
® = [Park,, 7| can be embedded into the phase space of ¥ = [Pargs, ns()].
Then we prove the existence of periodic orbit of length n+2 for & = [Parg,, 7]
and the proposition follows.

In order to apply Theorem 4 we need the existence of a covering map ¢ :

Q5 — K, 41 for 2" = 0 mod n + 1 which is not entirely trivial and is proved

10
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Fig. 7. The top row shows the two five-cycles in [Ming,, id]. The second row shows
the images of the top cycles under 74, and the last row shows the corresponding

periodic cycles in the digraph I'[Min;, 0, (ids)]-

in section 4.

Accordingly, it remains to show that ® exhibits a periodic orbit of length n—+2.

11



Fig. 8. The structure of the components in I'Min;s, 7, (ids)] containing a fixed
point. A single filled circle depicts a single state, while a circled number i depicts
that there are 7 direct predecessors that do not have any predecessors themselves.
Without loss of generality we may choose m = id,, ;1 since all other schedules
induce isomorphic SDS [10]. We next observe that par, : Fy — T, satisfies
the following functional relation:

’(/J(.’L']_,...,.’L‘n_l,’@b(.fl,...,l'n)) =Tp- (9)
As a consequence of this we derive
x = (21,29, ...,Tp) EN (par,(z), 2, X3, ..., Ty)
% (par,, (z), par, (par, (), T2, . . ., Tn), T3, - - -, Tn)
= (parn(x)axlax?n fee 7xn)
lﬁ) (parn(ac), T1,X2, .- 7$n—1)7

where +% denotes the update of state x;. Therefore we obtain the commutative

diagram
F [Par,, id] o (10)
l Tpmj
iy —=—1ry,
where
pProj(x1, ..., Tn, Tni1) = (T1,. .., Ts), (11)
tpar, (T1, -+, Tn) = (X1, ..., Tn, DAL, (T1, ..., Tp)), (12)
Oni1(T1, %o, - o, Tny1) = (Tpgt1, T1, - o5 Tn), (13)



and I = {z € T} | 2,4 = par, (21, ..., 2,)}.

Note that proj : F; — 3 and tpar, 1 F§ — FS are inverse with respect to each
other. Similarly we obtain [Parg,,id]®(z) = (z,,par,(z),z1,72,..., Ty 2)
and in general [Parg,, id](k) = projoo¥ 41 © Lpar, , Whence the order of an orbit
of [Parg,,id] is a divisor of n+ 1. Furthermore, it is easy to see that the orbit
containing the state (1,0,0,...,0) always have length n+2. Explicitly we have
forn="7

(1000000) — (1100000) — (0110000) —— (0011000)

! |

(0000001 ) <— (0000011) <~— (0000110) <— (0001100) .

Thus we can deduce from Theorem 4 that [Pargg,n, ()] has a periodic orbit
of length n + 2 and the proof of the proposition is complete.

The above proposition raises the following question: Given a graph Y, what are
the covering maps ¥ over Y, and what are the covering images Z, ¢ : Y — Z7

This question is investigated in some detail in the next section for n-cubes.

4 Covering maps over the n-cube

Recall that a covering map p: Y — Z is the same as a locally bijective graph
morphism from Y to Z. The covering map ¢ : Q3 — K, turns out to be a
special instance of a class of covering maps over n-cubes. The key idea here is
to consider 5 as a Cayley graph and K, as an orbit space with respect to a

regularly acting subgroup of @3-automorphisms.

Covering maps have been studied in [5] as follows: let ST" denote the set of arcs
or sides of the graph I'. Thus each edge {u, v} gives rise to two sides, (u, v) and
(v,u). Let G be any group. A G-chain on I' is a map ¢ : ST — G such that
é(u,v) = (¢(v,u))~" for all sides (u,v) of T'. The covering map I' = T'(G, ¢) of
I with respect to a given G-chain ¢ on I' is the graph with v[['] = G x v[I'] and
where vertices (g1,v1) and (go,v2) are joined by an edge iff (vy,vy) € ST and
g2 = g16(v1, ve). is clearly well-defined. Note that the 3-cube is isomorphic to
the covering graph K4(]F2, ¢) of K4 where ¢ is the Fy-chain assigning 1 to each
side of K. Moreover we note that the graph G5 on the third row in figure 10

13



is isomorphic to the covering graph Kg(]FQ, ¢), where ¢ again is the Fy-chain
assigning 1 to each side of Kg. A similar approach for constructing covering
maps uses so-called “voltage graph” [7-9]. Voltage graphs and G-chains are

closely related.

In this section we will develop our above orbit-space idea in some generality
and obtain new covering maps over n-cubes. We will first show how the ex-
istence of subgroups H < F} with certain properties can be used to obtain
covering maps. Specifically, a subgroup H of the n-cube ()% will, under certain
conditions, induce a covering ¢ : QF — H \ Q5 where H \ Q) has vertex set

Q% /H and two vertices @, U are adjacent iff there are elements u € 4 and v € ¥

such that {u,v} € e[Q}].

Lemma 6 For any subgroup H' < Fy with [Fy
an lothatplhds shégpoapetty H (x) N H(y) = @ for
(NS {0,61,...,6n}.

. [sketch] Let G’ be a group such that [Fy : G'] > n+ 1 holds. The
show that then there exists a set of representatives ® of G' < Fy that
an 5 -basis. Then one considers the Fy-homomorphism f defined by
i, for i = 1,...,n. Clearly, the subgroup G = f(G") has the property

n [F% : G]—1—(n—s)
2 = G(0)U | G(er) U U G(f (wy))
=1 Jj=s+1

1e lemma.

ion 7 For each subgroup H < Fy with the property H(x)NH (y) = &
cx,y € {0,€1,...,e,} the graph H\ Q} is connected, undirected and

and the natural projection
i Qp — H\Q), v H(i)

ng-map.

. We have to show that the mg-induced restriction mapping

TeSStar gy (€) (mg) : Stargy (§) — Star g gn (rg(£)) (14)

14

H'| > n+ 1 there ezists



is an isomorphism for arbitrary & € Fy. By construction, TeSstar gy (€) (rg) is
surjective and H(z) N H(y) = @ for x # y; z,y € {0,€1,...,e,} is equivalent
to Hx+ &) NHy+ &) = @ for x # y; z,y € {0,e1,...,e,} for any £ €
F>. Therefore TeSstargy (€) () is injective and the proof of the proposition is

complete.

Example: [Covering maps over Q3 and Q7]

We have constructed all covering images of the form H \ Q% for n = 4 and
n = 7. There are two non-isomorphic covering images when n = 4 and five
non-isomorphic covering images when n = 7. Moreover, for n = 4 explicit
computations show that the two covering images of the form H \ Q3 are the

only covering images.

The covering images for n = 4 and n = 7 are shown in figure 9 and figure 10,

respectively.

Fig. 9. The only non-isomorphic graphs of the form H \ Q%.

Let Hy, Hy, < (% be subgroups satisfying the condition of Lemma 6, that is,
H;(x)NH;(y) = @ forx # y; x,y € {0,e1,...,e,}. Assume there exists a graph
isomorphism v : H; \ Q% — H, \ Q3. Can 1 be lifted to a graph isomorphism
¥ 1 QY — Q47 Equivalently, does there exist a graph isomorphism v such that

the following diagram is commutative:

Q3 v Qn (15)

A

H\Qy———H,\ Q3

Here p; : QF — H;\ Q% is the standard coset projection map. This question is
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Fig. 10. All non-isomorphic graphs of the form H \ @} on 16 vertices. In each case
there are two interlocked cubes. The dotted edges show how the two cubes are
connected. The other vertices of the outer cube are similarly connected, but the
edges are not shown to ease visualization. Note that there are 4 lines in figure on
the top right x. The two lines connecting the outer cube to the extreme points of

the inner cube coincide.

of particular interest since it reflects on the relation between the automorphism

group of ()% and its corresponding orbit-space.

Let 1(0) = 0. Then we can compute the values of 9 on its neighbors and raise

the question whether or not ¢ can be lifted. The following example shows that
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in general this is impossible: Let H < Q} be the subgroup

H = {(0000000),
0110010
1110001

1000011),

1101000),
1011010
0011001
0101011),

1010100),
1100110
0100101
0010111),

0111100),
0001110
1001101
1111111)} .

Y ) Y Y

~—~~ N

)
);
)
)

o~ o~ o~ o~

)
);
)
)

~ N/~~~

)
);
)
)

~ o~

)
);
)
)

It is clear that H \ Q4 = Kj. Assume we have a commutative diagram

Q3 E Q3 (16)

’ 7 b

Ks= H\Q}—Y Ky~ H\Q} .

Set 0 = H andi =e¢; + H for i =1,2,...,7. Let ¢ be the automorphism
Y = (0)(1,2,...,7). We can assume that 1(0) = 0 (which forces (0) =
0). Diagram chasing now gives (1000000) & 1 % 3. Since ¥(0) = 0 and
(1000000) are adjacent, 1/(1000000) must be the element in 2 adjacent to
0. Thus, we obtain (1000000) = (0100000). In the same way we conclude
that 1(0100000) = (0001000). The element (1100000) € 4 is adjacent to 7)
(1000000) and 43) (0100000). Since 1 o p(1100000) = 5 we obtain by the fact
i) that 1(1100000) is the element in 5 adjacent to 1(1000000) = (0100000),
forcing us to conclude that 1(1100000) = (0100001). On the other hand,
if there is an automorphism 1, 1/(1100000) must also be the element of 5
adjacent to ¥(0100000) = (0010000), and thus ¥ (1100000) = (1010000), which
is impossible. The situation is illustrated in figure 11.

(1100000)—2~ (0100001) (1010000) <— (1100000)
(1000000) —2~ (0100000) (0001000) <~ (0100000)
(0000000)

i
(0000000)

Fig. 11. The impossibility of lifting +: By following two different paths in Q3 from
zero to (1100000) two different values for 1(1100000) are obtained.

Corollary 8 Let n be a natural number. Then we have 2" = 0 mod n + 1
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if and only if there exists a subgroup G < Ty with the property Fy = G(0) U
r 1 Gle).
1=1 7

PROOF. Suppose we have 2" = 0 mod n + 1. Since I} is a p-group there
exists a subgroup in its decomposition series H < Fj with the property
[F5 : H|=n+ 1. According to Lemma 6, there exists some set of H-represen-
tatives {¢1, ..., ¢, } that forms a basis of Fj. Let f be the Fy-homomorphism
defined by f(p;) = e;, for i = 1,...,n. Clearly, G = f(H) has the property
Fy = G(0) UU?, G(e;), whence the corollary.

The next Corollary proves the existence of covering maps ¢ : QF — K41
provided 2" = 0 mod n + 1 holds. This existence was used in the proof of

Proposition 5.
Corollary 9 There exists a covering map
Qs — Ky (17)

if and only if 2" =0 mod n + 1 holds.

PROOF. Let ¢ : Q¥ — K, ;1 be a covering map and let U = ¢~'(1).
Claim. U is dense in Q% and U = Uyey {ul-

Let = be an arbitrary (5 vertex. In case of x € U we are done, otherwise
we consider ¢(z) and 1 in K, ;. Clearly there exists some K, -edge of the
form {¢(z), 1} and local bijectivity guarantees that there exists some QQ5-edge
connecting x and some u € U. Accordingly, for every z € v[Q3]| Bi(x)NU # @
holds.

Local bijectivity immediately implies that any two elements u,u’ € U have
distance > 3, whence the second assertion follows and the Claim is proved.
In view of the Claim we have [U| = 2" and since [{u}| =n+1, |U| = 2"/n+1
holds i.e. 2" =0 mod n + 1.

Suppose next that 2279 mod n + 1 holds. Corollary 8 guarantees the ex-

istence of a subgroup (!) G < Fj with the property Fy = G(0) U U=, G(e;).
We set e, .1 = 0 and obtain according to Proposition 7 the covering mapping
¢ : QY — G\ Q% given by

e () = Gle:) - (18)
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It remains to show that K,.1 = G\ @} holds. Obviously, G \ Q% contains
n + 1 vertices. Let ¢ # j be two G\ Q% vertices and z € G(e;). We observe
that each of the sets G(es) for s = 1,...,n,n + 1 is is dense in Q% from
which we can conclude that there exists some y € G(e;) that is adjacent to .

Accordingly, any two non-equal G\ Q%-vertices are adjacent in G'\ Q%, whence
G \ Qg = Kn+1-
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